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Abstract – An Information Fusion (IF) based Decision 
Support Tool (DST) is presented to aid the identification of 
a target, from a large set of candidates, carrying out a 
pattern of activity which could be comprised of a wide 
variety of possible sub-activities and chronologies of 
events.  The overall activity can only be defined in terms of 
its impact and in some cases detectable signatures of sub-
activities. Hidden Markov Models (HMMs) and time series 
anomaly detection methods process multi-modal sensor 
data which are then integrated by a novel, efficient Bayes-
ian IF algorithm to provide a probability that each candi-
date under observation is carrying out the target activity.  
The DST has been developed to prototype status by imple-
menting this framework using commercial off the shelf 
(COTS) software.  The DST allows the decision maker to 
rapidly access current and historical situational awareness 
pictures quantifying the progress of the overall search. A 
range of geospatial visualization and data interrogation 
features available to the decision maker are described and 
their performance is qualitatively evaluated. Finally, 
planned future developments are outlined. 

Keywords: Decision support, Bayesian, Geospatial Infor-
mation System, Hidden Markov Model, Situational aware-
ness, Time series anomaly detection 

1 Introduction 

The task of identifying an unknown pattern of activity 
which may be being carried out by one or more individuals 
in a large set of candidates is a complex and challenging 
problem facing the military today.  For example, candidates 
may refer to people, buildings or vehicles.  In many cases 
only the output or impact of a target activity is known in 
advance meaning that there are no prescribed sub-activities 
which must take place for the overall activity to be success-
ful.  For example the pattern of activity carried out by an 
individual or group intending to threaten a military base may 
only be defined in terms of the form of the final attack.  
Overall activity success is often achievable using a large 
number of possible sub-activities which could be combined 
in a large number of possible chronologies.  This means that 

many traditional pattern recognition techniques will fail due 
to the inability to accurately define a library of target pat-
terns to monitor for.  Sub-activities may have known detect-
able signatures but these are often temporally sparse and 
with low signal to noise ratio.  When combined with low 
duty cycles for sensors this means that any single sensing 
solution is likely to have a low probability of detection.  
Furthermore the signatures of different sub-activities may be 
spread across multiple transmission modes for which there is 
no single cross-modal sensing technology.  Benign activity 
being carried out by other candidates often introduces con-
founding and confusable signals which act to mask the pres-
ence of a target activity and hence reduce the probability of 
detection and introduce false alarms.  These benign activi-
ties are often as ill-defined as the target activity.  The com-
pound effect of these challenges makes the fusion of a set of 
cross-modal sensors essential to detecting such an activity.   

The Decision Support Tool (DST) presented in this paper 
was developed to support a decision maker in the search for 
such an activity.  The high-level user requirements ad-
dressed during the design of the DST included: 
1. Sensor processing algorithms capable of determining 

the relevance of the data collected by a set of cross-
modal sensors to possible target activities. 

2. An information fusion centre capable of combining the 
information output from the sensor processing algo-
rithms to determine the overall belief that each candi-
date is carrying out the target activity. 

3. A generic software framework implementing algorithms 
that are free of inbuilt hypotheses and assumptions that 
could reduce the detection sensitivity of the system. 

4. A graphical user interface (GUI) capable of: visualising 
current and historical situational awareness pictures and 
sensor deployments; and, interrogating the underlying 
sensor data. 

Hidden Markov Models (HMMs) are a natural choice for 
mathematically describing situations where there is a se-
quence of hidden states of the world observed only through 
noisy sensor measurements.    Making an assumption of 
Markovian structure, the possible target and benign se-
quences of sub-activities that could be being carried out by 
each candidate can be modelled as HMMs.  This allows the 
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likelihood that each candidate is carrying out the target 
activity to be calculated given an incomplete sequence of 
noisy sensor measurements.  This process is formally de-
scribed in Section 2.1. 

For some sensors there are no signatures of sub-activities 
available that can instantaneously identify the activity; how-
ever the time series of some physical characteristic of a 
candidate carrying out the target activity may be expected to 
appear anomalous when compared to the time series of the 
same physical characteristic for all other (innocent) candi-
dates over time.  This makes the HMM approach unsuitable.  
In these cases a time series anomaly detection (TSAD) algo-
rithm is used to produce an anomaly score for each candi-
date over time.  Assuming the relationship between these 
anomalies and the possible target activities is known, this 
anomaly score can be used to calculate the likelihood that 
each candidate is carrying out the target activity.  This proc-
ess is formally described in Section 2.2.   

Bayesian probability provides a natural information fusion 
framework when probabilistic information is available from 
the processing of a set of cross-modal sensors. In particular 
the combination of the probabilistic belief about the true 
activities carried out by each candidate based upon the out-
put of HMMs and TSAD algorithms can easily be stated in 
terms of Bayesian probability.  Furthermore, Bayesian prob-
ability naturally allows the incorporation of prior knowledge 
about the expected number of candidates carrying out the 
target activity.  The highly efficient Bayesian algorithm that 
was designed and implemented for the DST is described in 
Section 2.3.  

The DST is a concept demonstrator which has been de-
veloped to prototype status using two core COTS software 
applications customised to add bespoke additional function-
ality.  The system architecture and GUI interfaces are dis-
cussed in Section 3. The visualisation options available to 
the decision maker to symbolise the probabilistic fusion 
outputs on top of imagery of the search area are described in 
Section 3.3. The bespoke data interrogation and sensor de-
ployment tracking features that were developed are de-
scribed in Section 3.3. 

In Section 4 we summarise the performance of the DST 
and in Section 5 we discuss some aspirational future devel-
opments. 

2 Core DST components 
2.1 HMM  

A HMM describes a system which at any time is in one of 
N distinct hidden states.  At regularly spaced, discrete times, 
the system undergoes a change of state according to a set of 
state transition probabilities.  These hidden states can only 
be observed indirectly through noisy sensor observations.  In 
the case of a first order HMM, which we consider here, the 
state transition probabilities depend only on the preceding 
state, not the whole history of the hidden process.  Given a 
possibly incomplete sequence of noisy observations the 

well-known forward algorithm ([2] pp. 203-206) is used to 
calculate the likelihood that the sequence of observations 
was produced by the underlying HMM.  HMMs provide a 
natural framework in which to describe the remote detection 
of a target activity whose structure is uncertainly known. 

More formally, a HMM is a quintuple (S, X, A, B, π), 
where Π = (A,B,π) represents the set of model parameters, 
i.e. the state transition probability matrix, observation prob-
ability matrix and state prior probability vector.  S denotes 
the set of possible hidden states and X denotes the set of 
possible observations.  In the DST S = {SP, ¬SP} denotes 
the hidden states Signal present and Signal not present, i.e. 
for a given sensor the activity being carried out by the can-
didate is either emitting or not emitting a signal that  can be 
recognised by the sensor as being a signature of the target 
activity.  Similarly, X = {SD, ¬SD} denotes the observations 
Signal detected and Signal not detected.    Let qt and ot 
denote the hidden state and observation at time t.  All 
HMMs used in the DST have the structure shown in Figure 
1 where the top four state transition probabilities are of the 
form p(qt | qt-1) and the bottom four detection probabilities 
are of the form p(ot | qt).  Note that p(SD | SP) and 
p(SD | ¬SP) denote the sensor probabilities of detection and 
false alarm respectively. 

SP ¬SP

SD ¬SD SD ¬SD

p(¬SD|SP) p(SD|¬SP)p(SD|SP) p(¬SD|¬SP)

p(SP|¬SP)

p(SP|SP) p(¬SP|¬SP)
p(¬SP|SP)

Hidden states

Observations

SP ¬SP

SD ¬SD SD ¬SD

p(¬SD|SP) p(SD|¬SP)p(SD|SP) p(¬SD|¬SP)

p(SP|¬SP)

p(SP|SP) p(¬SP|¬SP)
p(¬SP|SP)

Hidden states

Observations
 

Figure 1: DST HMM structure 

The state transition probability matrix A stores the probabil-
ity that hidden state i follows hidden state j: 

 , , 1( | )[ ], .i j i j t j t ia q s q sA pa − == = = (1) 
Note that the transition probabilities are independent of time 
(Markov assumption); they will however depend on the 
sensor to which the HMM corresponds.  The observation 
matrix B stores the probability of observation k being pro-
duced from state i and is again independent of time: 

 ( )], ( ( )[ ) | .i i t k t ik b k p o xB q sb = = == (2) 
The state prior probability matrix π stores the probability 
that at time t=1 the hidden state is sj: 

 1[ ], ( ).i i jp q sπ π π= = =  (3) 
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For a sequence of observations O=o1,o2,…,oT  the forward 
algorithm is used to compute the probability p(O| Π).  This 
problem can be viewed as evaluating how well the HMM 
predicts the given observation sequence. 
 The probability of the observation sequence O given a 
specific state sequence Q is: 
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The probability of the state sequence is: 
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So we can calculate the probability of the observation se-
quence given Π as: 
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Evaluating this probability directly would have computa-
tional complexity that is exponential in the number of time 
steps; therefore, an algorithm called the forward algorithm 
(a case of the Expectation Maximisation (EM) algorithm [4] 
pp. 124) is used to evaluate the probability recursively.  We 
define 

 1 2( ) ( , | ),t t t ii p o o o q sα = … = Π  (6) 
i.e. the probability of the partial observation sequence 
o1o2…ot and the state si at time t given the model.  After 
initialization α is calculated recursively as a sum over all 
states at the previous time step.  The sum of all values of α 
at the final time step will equal the probability of obtaining 
the observation sequence given the model.  More formally: 

1. Initialisation: O may contain missing observations 
(for which we will use the MATLAB inspired nota-
tion NaN); in this case we sum over all possible 
observations 

 1 1
1

( ) if  NaN
( )

otherwise
i i

i

b o o
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π
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π
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=
⎧
⎨
⎩

 (7) 

for 1 .i N≤ ≤  
2. Induction: 
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for 1, 11 .t T j N≤ ≤ − ≤ ≤  
3. Termination: 

 
1

) (| .)(
N

i
T ip O α

=
= ∑Π  (9) 

By calculating α as the sum over all states at the previous 
time step we reduce the complexity of the calculations in-
volved from 2NTT to N2T. 
 For a sequence of observations O=o1,o2,…,oT from a spe-
cific single sensor input to the DST the forward algorithm is 
used to compute the probabilities p(O| ΠR) and p(O| ΠB) for 
two HMMs ΠR and ΠB.  The subscripts R and B denote that 
the activity being carried out by the observed candidate is 
the target activity (referred to as RED) and or some other 

benign/innocent activity (referred to as BLUE).  ΠR de-
scribes the transition of the hidden states (sub-activities) of 
the RED activity detectable by the sensor and the sensor 
performance in detecting these hidden states.  ΠB performs 
the same role for an activity representing all possible BLUE 
activity.  This problem can be viewed as evaluating how 
well each of the RED and BLUE activity models predict a 
given observation sequence.  The output from the HMM 
processing of an observation sequence for a single building 
is the likelihood ratio 

 ( | ) .
( | )

p O R
p O B

Π
Π

 (10) 

2.2 TSAD 

For some global sensor and target activity combinations 
the relationship between sensor observations and the target 
or background activities is poorly understood.  For example 
the instantaneous trajectory of an individual intending to 
attack a military base may be indistinguishable from those of 
the innocent surrounding population; however, the route and 
movement track used by the individual over a period of time 
may appear anomalous when compared to the model of 
normality formed by monitoring all other individuals  This 
means that traditional pattern recognition methods and the 
HMM method described in Section 2.1 are unable to calcu-
late the likelihood that the sensor observations received are 
due to the presence of the target activity; however, it may be 
expected that the patterns of sensor observations of candi-
dates carrying out target activities will appear anomalous 
when compared to the patterns of sensor observations of all 
other candidates over time.   

For sensors in this category the DST takes as input for 
each candidate a multi-dimensional time series of independ-
ent statistics of measured physical emissions. For each pair 
of candidates the similarity between their time series is cal-
culated using the Dynamic Time Warping (DTW) algorithm.  
DTW ([4] pp. 85) is a time series similarity measure that is 
able to recognise two time series as similar when one is 
merely a non-linear temporal warping of the other.  This 
property makes DTW a suitable measure of similarity for 
detecting anomalous patterns of activity when two ‘normal’ 
candidates may be following non-linear temporal warpings 
of the same underlying pattern of activity.  Based on their 
time series similarity to all other candidates the candidates 
are clustered.  There are many possible clustering algorithms 
that can be used to cluster time series similarity measures 
[3]; we defer a complete description of the algorithm em-
ployed in the DST to a future publication.  In essence, an 
anomaly score can be calculated for each candidate based on 
how much it is an outlier to each of the resulting clusters.  
Using historical data or expert knowledge, likelihood mod-
els can be constructed to calculate the likelihoods that the 
anomaly score obtained would be due to a RED activity 
being carried out or a BLUE activity being carried out by 
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the candidate.  For each candidate, this can be expressed as 
the likelihood ratio 

 (anomaly score|RED) .
(anomaly score|BLUE)
p

p
 (11) 

These likelihood ratios constitute the TSAD input to the 
central fusion algorithm. 

2.3 Bayesian fusion algorithm 

Let 1 },{ , Nd d…  denote the set of N candidates under ob-
servation each of which is persistently in either the state 
RED (R) or BLUE (B); meaning a target activity either is or 
isn’t being carried out by the candidate respectively.  
Let 1{ , , }Mv v… denote the set of M observing sensors. At a 
given moment in time each sensor iv  processes all observa-
tions received for each candidate jd  and produces an array 
of continuous variables ijz .  Each ijz  could also be a vector, 
e.g. a time series of observations, and what follows holds 
directly for vectors. For each sensor iv  and each candi-
date jd , ijz  is processed by either an HMM or the TSAD 
algorithm to produce the likelihood ratio 

 ( | )
.

( | )
ij

ij
ij

p z R
p z B

L =  (12) 

Note that , , [0, ]iji j L∀ ∈ ∞ ; 1ijL =  indicates no informa-
tion; 1ijL <<  indicates that candidate jd  is likely to be in 
state B; and, 1ijL >>  indicates that candidate jd  is likely to 
be in state R.  Furthermore, let 

 
1

( | )
( | )

ij
j

i

M

i j

p z R
p z B

L
=

= ∏  (13) 

denote the product of likelihood ratios for candidate jd  
produced by all sensors , 1iv i M= … .  The persistent state 
of all N candidates can be described by a binary vector λ  
with N elements.  For example, (10010 )λ = …  indicates that 
candidate 1 is R, candidates 2 and 3 are B, candidate 4 is R 
etc.  There are a total of 2N possible persistent states of the 
world.  Furthermore, the number of distinct state vectors 
with exactly n elements in state R is 

 !( , ) .
!( )!

NC N n
n N n

=
−

 (14) 

Any distribution may be assumed for the expected number n 
of candidates in state R.  The prior probability of a particular 
state of the world λ  is given by 

 ) , ) | ) (( )( (n np n p np npλ λ λ= Σ = Σ  (15) 
where n is the number of candidates in state R and 

constant if  is compatible with 
| )

0 otherw
(

ise
n

np
λ

λ ⎧
= ⎨
⎩

 (16)

Since, a priori, all λ  with n candidates in state R are indis-
tinguishable, and there are ( , )C N n  of them we have 

1 if  is compatible with 
( , )| ) .

0 otherwis
(

e

n
nnp C N

λ
λ

⎧
⎪= ⎨
⎪⎩

 (17)

The posterior probability of the true state of the world being 
a particular λ based upon the data observed by sensor iv  is 
given by 

 | ) ( | ) )( (i iZ pp Z pλ λ λ∝  (18) 
where iZ  is the vector of sensor outputs for all candidates 
from sensor i, i.e. 1 2, , , )(i i i iNZ zz z…= .  If we assume the 
outputs from sensor i are mutually conditionally independent 
between candidates, then 

 ) ( | ( ))( | iji
j

Z p zp jλ λ= ∏  (19) 
where ( )jλ  is the j-th element of the state vector.  Further-
more, if we assume the outputs from all sensors are mutually 
conditionally independent for a given candidate, then 

 ) ( )| |( i
i

p Zp Z λ λ= ∏  (20) 
where Z is the vector 1 2, , ,( )MZ ZZ Z…= .  Substituting this 
into Bayes rule and dividing through by |( )i j ijp z BΠ Π , we 
have 

 
: ( ) 1

|( ) ( ).j
j j

p Z L p
λ

λ λ
=

⎛ ⎞∝ ∏⎜ ⎟
⎝ ⎠

 (21) 

Note that this is a product of the likelihood ratios of candi-
dates in state R as specified by λ .  Having calculated 

|( )p Zλ we are in a strong position to obtain many useful 
probabilities.  For example, the probability that candidate 

jd  is in state R (irrespective of the states of the other candi-
dates) is given by the sum 

 
: ( ) 1

| )(
j

p Z
λ λ

λ
=

∑  (22) 
where the sum is over all λ  for which candidate jd  is in 
state R.   

For large candidate numbers it is not computationally fea-
sible to implement this Bayesian framework in a “brute 
force” manner that explicitly calculates |( )p Zλ individually 
for every possible λ .  The time complexity of such an algo-
rithm is O(N2N-1).  Therefore a novel and efficient algorithm 
with time complexity O(N4) was developed to greatly reduce 
the required number of computations to calculate the prob-
abilities given by Equation (22).  The algorithm is based 
upon the following proposition: 
 
Proposition 1:  Let A be the N N× matrix whose ij-th ele-
ment (in the i-th row and j-th column) is given by 

 ,1i iA L=  

,

1

,
1

1 ( 1).r ji j i

i

r
A AL j−

−

=
= ∑ >  (23) 

and let ,*NA  denote the last row of A. Let P  denote the 
vector 1 2( , , , )NP P P…  with mP  being the prior probability 
that a particular λ for which precisely m candidates are in 
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persistent state R represents the true state of the world.  That 
is  

  ( )    1
(

 f
, )

rom (17).mP p m
C N m

=  (24) 

 Let ,*NP A•  denote the scalar product of P and ,*NA . Then: 

 ,*
: ( ) 1

( | ) ( )N
N

Z pP A p
λ λ

λ λ
=

• = ∑  (25) 
 
Proof: Full proof omitted for brevity; the following is a 
sketch proof of this result.  We first define some notation.  
Let ( , )n jΠΣ denote the sum of all ( , )C n j  possible products 
of the combinations of j elements of the set of likelihood 
ratios 1 2{ , , }, nL L L… .  For example, 

 (3,2) 1 2 1 3 2 3L L L L L LΠ = + +Σ . (26) 
It can be shown that the ijth element of A is equal to 

( 1, 1)i i jL Π − −Σ  which is clearly the sum of all ( , )C i j  products 
of the combinations of j elements of 1 2, , ,{ }iLL L…  that 
include iL .  An inductive proof can be given that the sum of 
the thm  column of the first n rows of A is precisely the sum 
of all ( , )C n m  products of likelihood ratios corresponding to 
combinations of m elements of 1 2, , ,{ }nLL L… .  That is 

 , ( , )
1

i m n

n

i
mA Π

=

Σ=∑ . (27) 

From Equation (21) it can be shown that 
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p Z L
λ
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=

= ∏   (28) 
Given Equations (23), (27) and (28), it follows that 
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where | |λ  denotes the number of candidates in persistent 
state R in λ . The result given in Equation (25) is derived as 
follows: 
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(30)

                                                                              □ 
                  
The usefulness of Proposition 1 is in noticing that A can be 
calculated recursively with time complexity O(N3).  If we 
cyclically permute 1 2( , , ), NL L L…  N-1 times and calculate A 
after each permutation we will have calculated Equation 

(25) for each target. This allows us to then calculate Equa-
tion (22) for each target as the normalization constant for 
Bayes rule will simply be the sum of the scalar product  for 
all instances of A and 0P , the prior probability that there are 
no candidates in persistent state R.  Full details of the proof 
of this proposition, the time complexity calculations and the 
avoidance of overflow issues in the algorithmic implementa-
tion will be given in a forthcoming publication by J. E. 
Barker and D. J. Salmond. 

3 System architecture and visualisation 
3.1 System overview 

The DST presented here is a prototype concept demon-
strator based on the HMM forward algorithm, TSAD and 
Bayesian fusion algorithm described in Section 2.  The con-
cept of use for the DST is as an aid to a decision maker 
leading a search for an activity, of the type described in 
Section 1, possibly being carried out by an unknown number 
of individuals within a large set of candidates.  Through the 
course of the search the decision maker will task local sen-
sors to remotely observe small numbers of candidates.  The 
data collected by each local sensor will be processed after 
each tasking and the sequence of Signal detected and Signal 
not detected observations will be updated for each candi-
date.  The decision maker may also task global sensors to 
remotely observe some physical emissions from all candi-
dates over time; the processed data from each global sensor 
will be used to update a multi-dimensional real-valued time 
series stored for each candidate.  On the presentation of new 
or updated data the DST processes the updated observation 
sequences or time series for each candidate using the HMM 
forward algorithm or TSAD.  The updated likelihood ratios 
for all candidates are processed through the Bayesian fusion 
algorithm on a single sensor basis and across the complete 
set of sensors.  The output of this is a set of updated prob-
abilities that each candidate is carrying out the target activity 
based upon each of the individual sensors as well as the 
fusion of all sensors; these probabilities are stored within a 
central common data store as shown in Figure 2.  The HMM 
forward algorithm, TSAD, Bayesian fusion algorithm and 
required data handling and storage functions are imple-
mented in the COTS software The Mathwork’s MATLAB. 
The probabilities stored in the common data store are then 
accessed by the ESRI Geographic Information System (GIS) 
ArcMap for visualisation.  

On initiation of the fusion system the decision maker can 
choose to operate the system in one of two separate high-
level components: the Standard Fusion system or the ‘What-
If’ Fusion (WIF) system. The complete process described 
above constitutes the Standard Fusion system.  The WIF 
system was developed to allow alternative hypotheses about 
the parameters of the target and background activities and 
sensor performance to be investigated during the search 
without altering the core Standard Fusion system.  Essen-
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tially the Standard Fusion system can be seen as utilising the 
best possible estimate of the HMM parameters and Bayesian 
prior probabilities given available historical data and expert 
knowledge of the target activity; whereas the WIF system 
allows the decision maker to explore the impact on the 
probabilistic outputs of changes to these assumed parame-
ters. This option is represented by decision node 1 in Figure 
2 and is made through the Fusion GUI shown in Figure 3.  
The GUI runs in MATLAB but is activated directly from 
ArcMap via a Visual Basic for Applications (VBA) script. 

 

  
Figure 3: DST screenshot with GUI 

3.2 Standard fusion 

The Standard Fusion system has been designed to make 
no assumptions about the specific sensors which will be 
inputting observations to the system and as such can ac-
commodate any sensor whose data can be meaningfully 
processed within the HMM or time series anomaly detection 
frameworks described in Section 2. Prior to initiating the 

search the decision maker provides a start-up file to the DST 
containing the following information: 

• A list of Sensors; 
• Each sensor’s processing type (HMM or TSAD); 
• HMM parameters;  
• TSAD parameters including likelihood model 

specification; 
• Candidate unique identifiers. 

This information is used by the DST to automatically as-
sociate new sensor data files with the correct data processing 
algorithm, either the HMM or TSAD. This functionality, 
producing formatted data dependant on sensor type and the 
sensors associated processing parameters, is represented by 
decision node 2 in Figure 2.  The data is then processed by 
the associated algorithm to produce a likelihood ratio of the 
form shown in Equation (12) for each candidate. These 
single sensor likelihood ratios are then processed through 
the Bayesian fusion algorithm to provide a probability that 
each candidate is carrying out the target activity based upon 
that single sensor’s observations. The products all sensor 
likelihood ratios for each candidate (Equation (13)) are then 
processed through the Bayesian fusion algorithm to provide 
a probability that each candidate is carrying out the target 
activity given all sensor data. All calculated probabilities are 
output in a format that can immediately be symbolised by 
ArcMap when coupled with the candidate coordinates at the 
time of observation.  

3.3 What-If fusion 

In practice the HMM and TSAD parameters and Bayesian 
prior probabilities would be the best possible estimates 
based on historical data and expert knowledge of the target 
activity. Recognising that there may be error or uncertainty 
in the elicited probabilities the WIF system was developed 

Figure 2: DST workflow diagram 
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to allow alternative hypotheses about the parameters of the 
target and background HMMs and sensor performance to be 
investigated during the search without altering the core 
Standard Fusion system. This allows the decision maker to 
explore the impact on the probabilistic outputs of changes to 
the assumed parameters. These alternative hypotheses and 
corresponding parameters can be generated during the 
search through a dedicated WIF GUI and their impact seen 
without affecting the Standard Fusion system. 

The WIF system allows testing of hypothesised scenarios 
that range from the simple, such as removing candidates or 
sensors from consideration by the DST, through to the more 
complex situation of hypothesising a specific target activity 
and re-processing the sensor data with the SME informing 
an alternative set of transition probabilities for the HMMs. 
The WIF system can also allow sensor data to be reproc-
essed using alternative algorithms to the HMM or TSAD, so 
long as the algorithms are compatible with both the Bayes-
ian fusion framework and the data provided by the sensors. 

The WIF GUI allows the decision maker to specify candi-
date removal and sensor subset hypotheses. The parameters 
required for data processing under these hypotheses are then 
specified through a Model Generation GUI. Upon specifica-
tion of a sensor subset all data previously processed through 
the Standard Fusion GUI for those sensors is loaded from 
the common data store, the pre-formatted data is then re-
structured based upon any time constraints, e.g. data re-
ceived out of chronological order. The newly structured data 
is then passed from the data restructuring process to the 
standard data processing described in Section 3.2.  

3.4 Visualisation 

Visualisation of the probabilistic outputs of the Standard 
Fusion and WIF systems is provided by a customised GIS 
application developed using the ESRI COTS software 
ArcMap.  The visualisation application includes the follow-
ing functionality: 

• Display background geospatial information, e.g. 
aerial imagery, mapping and polygons representing 
the candidates;  

• Visualise spatially and temporally referenced prob-
abilistic output of the Standard Fusion and WIF 
systems; 

• Temporal analysis of probabilistic information us-
ing a time analysis extension; 

• Creation and visualisation of geographic represen-
tations of sensor tasking thus allowing temporal 
and spatial analysis of sensor deployments. 

The foundation of the visualisation tool is the imported 
geospatial information; this provides the background im-
agery and underlying coordinate system over which the 
probabilistic information can be symbolised. The DST can 
be initialised with a single ortho-rectified, geo-referenced 
image and set of polygons representing the shape and spatial 
distribution of the candidates. The advantage of a GIS sys-

tem however is in the depth of information which can be 
supported; additional information such as the infrastructure 
of the areas containing the set of candidates can easily be 
ingested into the DST to provide a rich source of back-
ground information.  
  The free ArcMap extension TimeSlider, from Applied 
Science Associates (ASA), was used to allow rapid changing 
between current and historical situational awareness pic-
tures. Using this extension it is quick and easy for the deci-
sion maker to analyse the temporal trends in the spatially 
referenced probabilistic information. 

The probabilistic information (with associated geospatial 
coordinates) is accessed by ArcMap from the common data 
store created by the MATLAB fusion systems. The visuali-
sation tool uses VBA scripts to allow the decision maker to 
select and visualise a specific single sensor or fused prob-
ability file. Increasing probability that a candidate is carry-
ing out the target activity is symbolised by a circular poly-
gon of increasing radius and also a colour-map as shown in 
Figure 4. The ability to visualise single sensor as well as 
fused probabilistic outputs aid the decision maker in his 
search by allowing him to understand the relative contribu-
tions of each sensors evidence to the fused probabilistic 
output.  This insight will also suggest possible ‘What-it’ 
hypotheses to generate. 

Sensor taskings can be captured in the 2D environment 
using a semi-automated process where the deployment area 
is created by the user as a polygon and details such as sen-
sor type, deployment time and deployment duration can be 
associated with it. This supports the decision maker in his 
search by allowing spatio-temporal analysis of sensor task-
ings to ensure limited sensing resources are being utilised 
optimally.   

A data interrogation tool known as the ‘Dig Down’ tool 
has been to developed to allow the decision maker to 
quickly display plots of the sensor observations and time 
series data received for a particular candidate.  This tool 
uses a VBA script to command MATLAB to plot data 
drawn from the common data store.  This aids the decision 
maker in his search by presenting the underlying sensor data 
in such a way as to indicate the driving factors behind the 
probabilistic outputs.  

 

 
Figure 4: DST probability symbology1 

                                                 
1 Candidate polygons shown have been chosen to be generic 
and not refer to any particular type of candidate.  
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4 Summary 

The concept demonstrator DST presented in this paper 
has been tested through a series of evaluation scenarios 
supporting a real decision maker but based on synthetic 
data.  The DST was found to be an effective and efficient 
way to collate a large number of sensor inputs over a large 
candidate target set and present the decision maker with a 
single current and historical situational awareness picture.   
This picture and the ability to track its evolution over time 
aided the decision maker in prioritising sensor deployments 
to effectively rule out some candidates and increase the 
focus on others.  The DST acted not only as a record over 
time of the progress of the search but also as a record of 
sensor taskings and the volume of data collected against 
each candidate.  The data interrogation features provided by 
the single sensor view and the ‘Dig Down’ tool were found 
to be essential in allowing the decision maker to understand 
the relative contributions of different sensors evidence to the 
overall belief attributed to each candidate. 

5 Future Development  

The current version of the DST is only able to process 
sensor observations and display the resulting probabilistic 
information at the individual candidate level.  In practice, 
many sensors will return observations at different 
granularities of the candidate set, e.g. specific to sub-
features of the candidates or only specific to a sub-set of all 
candidates. The process of associating all observations to 
individual candidates causes a loss of information between 
the raw sensor observations and the data maintained and 
processed by the DST. Research is now underway to under-
stand how this information can be retained and exploited in 
a future version of the DST based on a hierarchical Bayes-
ian fusion framework. 

The current 2D visualisation tool has the limitation that 
only a single probability against each individual candidate 
polygon can be displayed at a specific time step. In practice 
it is often important to the decision maker to be able to 
display more specific information about the candidate such 
as its structure or status at the time of observation as these 
may be influence the relevance of the data collected to the 
search.  Currently there is no mechanism for displaying 
such information.  Options such as transitioning the DST to 
a 3D environment such as Esri’s ArcScene are being inves-
tigated to provide these capabilities.   

To support the large volumes of data that will be gener-
ated by the improved DST visualisation system a more 
intelligent geo-spatially referenced database system will be 
required. This database should allow data to be attributed at 
multiple levels of granularity as described above. This da-
tabase will operate in a client-server environment that will 
allow alterations to be made by a number of different cli-
ents through specific applications. Applications will in-
clude: an interactive tool for sensor tasking queries which 

will provide information on data received and data re-
quested; and, a sensor deployment tool that will allow map-
ping of sensor coverage and line of sight. 

The HMM processing within the DST is currently applied 
to each sensor observation sequence separately.  In practice 
this means that the likelihood of obtaining each sensor 
observation sequence is not calculated with an assumption 
of a single underlying sequence of hidden states which all 
sensors are observing.  Ignoring this dependency between 
sensor observations means additional constraints on the 
possible underlying hidden state sequence may be being 
ignored. Work is underway to understand the maximum 
amount of information which can be extracted from the 
observation sequences across all sensors and the impact that 
this will have on the required sensor processing algorithms.   

 The current anomaly detection process makes an as-
sumption that p(data|RED)=p(data|anomaly score). It was 
recognised during development of the DST that this is 
unlikely to be true in practice and the relationship between 
anomality and RED will be more complicated; for some 
sensor and target activity combinations it may in fact be the 
case that RED candidates do not appear anomalous at all. 
Understanding this relationship depends upon understand-
ing the background activity taking place across the areas 
containing the set of candidates and the phenomenology of 
the sensor and target activity combination. For many appli-
cations this information may not available prior to initiating 
the search.  To solve this complex problem we propose to 
separately track three hypotheses within the DST: non-
target, target and anomalous where the target set and 
anomalous set are possibly intersecting subsets of the set of 
all candidates. 
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